1. Qin S.J., Chiang L.H. Advances and opportunities in machine learning for process data analytics. Computers & Chemical Engineering, Vol. 126, P. 465–473. (In Eng).
2. Ansari A.M., Sylvester N.D., Sarica C., Shoham O., Brill J.P. A comprehensive mechanistic model for upward two-phase flow in wellbores. SPE Production & Facilities, 1994, Vol. 9, issue 2, P. 143–151. (In Eng).
3. Beggs H.D., Brill J.P. A study of two-phase flow in inclined pipes. Journal of Petroleum Technology, 1973, Vol. 25, issue 5, P. 607–617. (In Eng).
4. Hasan A.R., Kabir C.S. A study of multiphase flow behavior in vertical wells.
SPE Production Engineering, 1988, Vol. 3, ssue 2, P. 263–272. (In Eng).
5. Vogel J.V. Inflow performance relationships for solution gas drive wells. Journal of Petroleum Technology, 1968, Vol. 20, issue 1, P. 83–92. (In Eng).
6. Brown K.E. The Technology of artificial lift methods. Tulsa: PennWell Books, 1984,
474 p. (In Eng).
7. ПАО НК «Роснефть». Методические указания Компании «Расчет геологических показателей программ эксплуатационного бурения и зарезки боковых стволов». 2022.
8. Bikmukhametov T., Jäschke J. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers and Chemical Engineering, 2020, Vol. 138, 106834. (In Eng).
9. Бикбулатов С.М., Пашали А.А. Анализ и выбор методов расчета градиента давления в стволе скважины // Нефтегазовое дело. 2005. № 2. С. 12.
URL: https://ogbus.ru/files/ogbus/authors/Bikbulatov/Bikbulatov_1.pdf (дата обращения: 15.09.2024).
10. Lundberg S.M., Erion G.G., Lee S.I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv, 2018, URL: https://arxiv.org/pdf/1802.03888 (accessed: 15.09.2024). (In Eng).